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Envelope glycoproteins (Env) of lentiviruses typically possess unusually long cytoplasmic domains, often 150 amino acids or
longer. It is becoming increasingly clear that these sequences contribute a diverse array of functional activities to the life cycle of
their viruses. The cytoplasmic domain of gp41 (gp41CD) is required for replication of human immunodeficiency virus type 1
(HIV-1) in most but not all cell types, whereas it is largely dispensable for replication of simian immunodeficiency virus (SIV).
Functionally, gp41CD has been shown to regulate rapid clathrin-mediated endocytosis of Env. The resultant low levels of Env
expression at the cell surface likely serve as an immune avoidance mechanism to limit accessibility to the humoral immune re-
sponse. Intracellular trafficking of Env is also regulated by gp41CD through interactions with a variety of cellular proteins. Fur-
thermore, gp41CD has been implicated in the incorporation of Env into virions through an interaction with the virally encoded
matrix protein. Most recently, the gp41CDs of HIV-1 and SIV were shown to activate the key cellular-transcription factor NF-�B
via the serine/threonine kinase TAK1. Less well understood are the cytotoxicity- and apoptosis-inducing activities of gp41CD as
well as potential roles in modulating the actin cytoskeleton and overcoming host cell restrictions. In this review, we summarize
what is currently known about the cytoplasmic domains of HIV-1 and SIV and attempt to integrate the wealth of information in
terms of defined functional activities.

BACKGROUND: BIOSYNTHESIS AND PROCESSING OF
ENVELOPE

The target cell tropism of human immunodeficiency virus
(HIV) and simian immunodeficiency virus (SIV) is deter-

mined by the virally encoded envelope glycoprotein (Env). Env
consists of two components, the surface subunit (SU) gp120 and
the transmembrane subunit (TM) gp41, which are produced from
the precursor protein gp160 (1–3). In the plasma membranes of
virions and infected cells, the mature Env complex is a trimer
formed by three pairs of gp120 and gp41 (4–12). gp120, which is
located entirely extracellularly, mediates sequential recognition of
and binding to CD4 and the coreceptor (13–15); gp41 anchors the
Env complex in the plasma membrane and is responsible for the
fusion of viral and target cell membranes (16–18). The standard
model of Env topology describes gp41 as a type I transmembrane
protein, with one extracellular domain, one membrane-spanning
domain, and one cytoplasmic domain (19, 20).

The precursor protein gp160 is translated from env mRNA at
the rough endoplasmic reticulum (ER) and is modified cotransla-
tionally by the addition of multiple N-linked carbohydrates (21–
25) as well as O-linked carbohydrates (26, 27). While still within
the ER, gp160 oligomerizes into homotrimers. Subsequently, tri-
meric gp160 is transported to the Golgi apparatus, where it is
cleaved proteolytically by cellular furin or a cellular furin-like pro-
tease into gp120 and gp41 (28–32). gp120 and gp41 remain non-
covalently associated after the cleavage (18), thus forming the ma-
ture trimeric Env complex. These Env complexes are then
transported to the plasma membrane where they can be incorpo-
rated into budding virions (33, 34). Env trimers can be observed as
“spikes” on the surface of virus particles by electron microscopy
(12, 35, 36).

COMPARISON OF THE CYTOPLASMIC DOMAINS OF
RETROVIRAL ENVELOPE PROTEINS

Arguably the most unusual feature of the lentiviral Env protein is
the extraordinary length of its cytoplasmic domain. Env of most

lentiviruses has a cytoplasmic domain longer than 130 amino ac-
ids (aa), the only exceptions being the closely related feline immu-
nodeficiency virus (FIV; 50 aa) and puma lentivirus (PLV; 76 aa).
In contrast, the analogous region of viruses from other retrovirus
genera is typically shorter than 60 aa (Fig. 1).

The genomes of lentiviruses are highly adaptable; genetic in-
formation that conveys no advantage for viral fitness is lost quickly
(39, 40). This implies that the unusually long cytoplasmic domain
of lentiviruses is not a mere evolutionary artifact but rather con-
tributes functional activities important for the virus. Indeed, ex-
tensive scientific investigation has identified a considerable variety
of cellular interaction partners and functional activities of the cy-
toplasmic domain of HIV and SIV gp41 (gp41CD).

STRUCTURAL FEATURES AND TOPOLOGY

gp41CD can be divided into distinct domains based on biophysi-
cal properties (Fig. 2): the membrane-spanning domain is fol-
lowed by a region of high hydrophilicity (20), which contains a
highly immunogenic region (HIR) that frequently elicits high lev-
els of antibodies in HIV-infected individuals and SIV-infected
rhesus macaques (41–46). The C-terminal half of gp41CD con-
tains two amphipathic segments believed to form �-helices, des-
ignated lentivirus lytic peptide 2 (LLP-2) and LLP-1 (47, 48). Ad-
ditionally, a leucine zipper motif located between LLP-2 and
LLP-1 has been identified and designated LLP-3 (49).

The high prevalence of antibodies against the HIR in sera from
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HIV-infected individuals has led to the proposal of an alternative
model for gp41 topology in which sequences C-terminal to the
membrane-spanning domain are not entirely contained within
the cell or virion but instead form an extracellular loop which
exposes the HIR to the extracellular medium (50–53). Recent
studies have provided substantial evidence against this alternative
model for Env of both HIV-1 and SIV (45, 54). While there is little
proof to convincingly support the alternate topology, a transient
(52) or low-level existence of such a structure cannot be rigorously
excluded at this time.

Synthetic peptides corresponding in sequence to LLP-1, -2,
and -3 interact with lipid bilayers in vitro (49, 55, 56), and gp41CD
as a whole has been shown to weakly associate with lipid bilayers
(19, 57). Based on this indirect evidence, a model has been pro-
posed in which the LLPs form an association with the intracellular
or intravirionic leaflet of the membrane (interaction partners of
gp41CD are summarized in Table 1), with the hydrophobic face of
each LLP buried in the membrane, while the hydrophilic faces are
exposed to the cytoplasm (49, 55, 80). This model was recently
corroborated by a study using iodonaphthyl azide labeling to de-
tect membrane immersion of gp41CD (83).

It has been suggested that gp41CD may help to stabilize the Env
trimer in its prefusion “spring-loaded” conformation, as trunca-
tion of gp41CD has been documented to enhance the fusogenicity
of surface-expressed Env (84–89). LLP-2 appears to play a partic-
ularly important role for this stabilization (90, 91). The precise
mechanism by which gp41CD consolidates the metastable prefu-
sion state of Env is unknown, but it has been proposed to be due to
(i) an interaction with the matrix (MA) domain of the viral Gag
precursor protein (see below) (92–94) and/or (ii) a stabilizing
effect of the association of gp41CD with the plasma membrane
(91).

REQUIREMENT OF THE CYTOPLASMIC DOMAIN OF GP41
FOR REPLICATION

One of the most enigmatic phenomena regarding gp41CD is its
cell-type-dependent requirement for HIV-1 replication. Trunca-
tion of gp41CD blocks replication of HIV-1 in most cell types,
including peripheral-blood mononuclear cells (PBMC) and
monocyte-derived macrophages (MDM). However, there are at
least two cell lines in which HIV-1 with truncated Env is able to
establish productive infection (Table 2). Truncation does not pre-
vent proper processing of Env, nor does it inhibit the fusion pro-
cess (88, 96–98, 100). When HIV-1 virions with truncated Env are
produced in a permissive cell line, their single-round infectivity in
both permissive and nonpermissive cells is almost as efficient as
the single-round infectivity of wild-type virions (96, 97), implying
that there is no structural defect associated with Env truncation
that prevents entry into nonpermissive cell lines. However, cell
types that are not permissive for replication of HIV-1 with trun-
cated Env show a marked decrease in incorporation of truncated
Env into virions, whereas permissive cell lines incorporate trun-
cated Env at only slightly reduced levels into nascent virions (88,
96–100). This selective incorporation defect is likely the underly-
ing cause for the cell type dependence of replication of HIV-1 with
truncated Env. It is unknown why some cell lines incorporate
truncated Env much more efficiently than others, at least in part
because the process of Env incorporation itself is still incompletely
understood (33). Regardless of the precise mechanism, it seems
clear that the cytoplasmic domain of HIV-1 gp41 is critical for
orchestrating the incorporation of Env into virions in most cell
types.

There are only three known instances in which HIV-1 evolved
truncated gp41CD variants. In each case, these adaptations were
the result of extensive passaging in tissue culture and were accom-
panied by major compensatory changes (101–104). Conversely,
SIV routinely evolves truncations of gp41CD when passaged in
human cells, including cells that are not permissive for replication
of HIV-1 with truncated Env (105–108). Indeed, it has been
shown that truncation of SIV gp41CD increases Env incorpora-
tion into virions and consequently increases the levels of infectiv-
ity and fusogenicity (89, 109, 110). This offers a satisfying expla-
nation for the phenomenon that SIV with truncated Env replicates
more efficiently in human cells and thus quickly replaces viral
species encoding full-length Env in culture (105–108). Intrigu-
ingly, however, truncation of Env appears to confer this selective
advantage only in human cells, as gp41CD truncations do not
evolve when SIV is cultured in rhesus PBMC (106–108). Consis-
tent with this, SIV variants with a premature stop codon in
gp41CD replicate less efficiently in rhesus PBMC than parental
virus with full-length Env (107, 111), and reversion of gp41CD-
truncated mutants to a full-length phenotype has been docu-
mented after prolonged passage in rhesus PBMC (106–108). It
remains unknown why the selective advantage of SIV gp41CD
truncations observed in human cells does not apply to SIV repli-
cation in rhesus-derived cells. As there are only very few rhesus cell
lines, most tissue culture experiments examining the effects of SIV
gp41CD truncation have been performed with human cell lines.
Consequently, no information is available about any resultant in-
fluences of SIV gp41CD truncation on Env incorporation, infec-
tivity, or fusogenicity in rhesus cells. A possible explanation for the
negative effect of SIV gp41CD truncation on replication in rhesus,

FIG 1 Comparison of Env cytoplasmic-domain lengths in lentiviruses and
other retroviruses. Cytoplasmic-domain lengths are based on the UniProt da-
tabase. BIV, bovine immunodeficiency virus; CAEV, caprine arthritis enceph-
alitis virus; EIAV, equine infectious anemia virus; FIV, feline immunodefi-
ciency virus; HIV, human immunodeficiency virus; MVV, maedi/visna virus;
PLV, puma lentivirus; SIV, simian immunodeficiency virus; ALV, avian leu-
kosis virus (genus, Alpharetrovirus); MMTV, mouse mammary tumor virus
(genus, Betaretrovirus); BLV, bovine leukemia virus (genus, Deltaretrovirus);
HTLV-1, human T-lymphotropic virus 1 (genus, Deltaretrovirus); MLV, mu-
rine leukemia virus (genus, Gammaretrovirus); SFV, simian foamy virus (ge-
nus, Spumavirus). *, Prediction of cytoplasmic-domain length for ALV and
PLV was not included in UniProt and was obtained with TMHMM 2.0 soft-
ware (http://www.cbs.dtu.dk/services/TMHMM) (37). (Figure inspired by
reference 38).
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but not human, PBMC could be the presence of a hitherto-unrec-
ognized host restriction factor. Such a restriction factor might
inhibit the incorporation of SIV Env but be counteracted by full-
length gp41CD. The human orthologue of this factor may not be
effective against SIV, allowing SIV with truncated gp41CD to rep-
licate freely in human cell lines, even in those not permissive for
replication of HIV-1 with truncated gp41CD. The existence of this
hypothetical factor would also offer an explanation for the selec-
tive incorporation defect of truncated HIV-1 Env discussed above.
Indeed, the phenotype of this incorporation defect bears the hall-
marks of a species-specific, differentially expressed restriction fac-
tor. In human cells permissive for replication of HIV-1 with trun-
cated gp41CD, expression levels of this factor may be significantly
lower than in nonpermissive cells. If such a putative restriction
factor does exist, comparing the expression profiles of permissive
and nonpermissive cell lines might provide a means to identify
this factor.

Consistent with the observation that SIV with truncated
gp41CD shows reduced viral fitness in rhesus PBMC during tissue
culture experiments, gp41CD-truncated SIV mutants quickly re-
vert to a full-length Env phenotype during in vivo infection of

rhesus macaques (106, 108, 111). Moreover, a cohort of rhesus
macaques infected with a rhesus macaque SIV (SIVmac) mutant
that had gp41CD truncated through multiple redundant muta-
tions which prevented reversion to a full-length phenotype, had
markedly reduced viral loads and did not show clinical signs of
progression to AIDS (111). Different selective pressures, such as
the ability of the virus to evade the host immune response, are
likely to influence the sequence evolution of gp41CD during in-
fection in vivo. As discussed in further detail in the following sec-
tion, HIV and SIV limit the levels of Env on the surface of cells and
virions through gp41CD; this could be another selective force
working against Env truncation during infection of rhesus ma-
caques.

ENDOCYTOSIS

After transport to the cell surface, Env trimers of HIV-1 and SIV
are rapidly internalized by clathrin-mediated endocytosis, result-
ing in low steady-state levels of Env surface expression (60, 64, 65,
112). This process is regulated by at least two separate domains of
gp41CD.

The first established endocytosis motif conforms to the con-

FIG 2 Schematic representation of gp41CD regions. (A) HIV-1. Amino acid sequences and numbering are based on full-length Env of strain NL4-3. (B) SIVmac.
Amino acid sequences and numbering are based on full-length Env of strain SIVmac239. Black lines indicate the positions of overlapping open reading frames
(ORFs) of nef and the second exons of tat and rev in the proviral genome. Note that LLP-2 and LLP-3 sequences of SIVmac are derived from sequence alignment
with HIV-1 only, as there are to our knowledge no studies defining the SIV sequences for these regions. MSD, membrane-spanning domain; EC, endocytosis;
HIR, highly immunogenic region; NA, NF-�B activation; LLP, lentivirus lytic peptide. See the text for details.
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sensus sequence YXX� (where X is any and � a hydrophobic
amino acid) and is located close to the membrane-spanning do-
main (Fig. 2, amino acids 709GYSPL713 in HIV-1 NL4-3 and
720GYRPV724 in SIVmac239) (64, 65, 112). The cellular interac-
tion partner mediating endocytosis through this membrane-
proximal YXX� motif is the �2 subunit of the clathrin-associated
adaptor protein complex AP-2 (Table 1) (58–60, 62). Any effects

resulting from mutation of this YXX� motif on viral infectivity
and fusogenicity in tissue culture-based experiments may vary
with the virus strain, the cell type, and the nature of the assays used
(58, 110, 113–115). However, disruption of this motif in SIV
gp41CD results in markedly lower viral loads and strongly re-
duced pathogenic potential during infection of rhesus macaques
(116).

TABLE 1 Interaction partners of HIV-1 gp41CDa

Interaction partner Function
Amino acids of gp41CD required
for binding

Conserved in
SIV gp41CD References

AP-1 Intracellular trafficking between TGN and endosome 709–713; 853–854 Yes 58, 59, 60, 61
AP-2 Clathrin-mediated endocytosis 709–713; 853–854 Yes 58, 59, 60, 62,

63, 64, 65
CaM Apoptosis (?) 769–788 (LLP-2); 826–854 (LLP-1) Yes 66, 67, 68, 69,

70, 71
�-Catenin Reorganization of cytoskeleton (?) 787–813 (LLP-3) Yes (?) 72, 73
Luman Counteracting antiviral activity of luman (?) 749–766 Yes (?) 74
MA Env incorporation 788–854 (LLP-3 and LLP-1) Yes 75, 76
p115-RhoGEF Disruption of RhoA signaling (?); reorganization of

cytoskeleton (?)
769–854 (LLP-2, LLP-3, and LLP-1) No 38, 77

Perilipin-3 Intracellular trafficking; MA interaction (?); Env
incorporation (?)

784–822 (LLP-3) ND 76, 78, 79

Plasma membrane (?) Stabilization of Env in prefusion conformation (?) 769–788 (LLP-2); 787–813 (LLP-3);
826–854 (LLP-1)

Yes (?) 19, 49, 56, 57, 80

PRA1 Intracellular trafficking (?) Unknown for HIV-1; 776–792 for
SIV (LLP-2)

Yes 38

Prohibitin 1/2 Overcoming block in nonpermissive cells (?) 788–798 (part of LLP-3) ND 81
TAK1 NF–�B activation 762–773 No 82
a Amino acid (aa) numbering is based on the sequence of the full-length NL4-3 envelope (GenBank accession no. AF324493.2). TGN, trans-Golgi network; (?), interaction/function
not fully established; ND, not determined.

TABLE 2 Summary of cell lines tested for permissiveness of HIV-1 replication and incorporation of Env with truncated gp41CDa

Cell line Description Replication Incorporation References

MT-4 Human CD4� T-cell line isolated from patient with T-cell leukemia; HTLV-1
transformed but not HTLV-1 producing

�� �� 88, 95, 96

M8166 Human CD4� T-lymphoblastoid cell line derived from C8166; HTLV-1
transformed but not HTLV-1 producing

�� ��� 97

H9 Human CD4� T-cell line derived from HUT 78 cells, which were isolated
from patient with Sézary syndrome

— � 97, 98, 99

CEM (12D7) Human CD4� T-lymphoblastoid cell line derived from A3.01, which is
derived from CEM, a cell line established from blood of a patient with
acute lymphoblastic leukemia

— — 96

Jurkat Human CD4� T-lymphoblastoid cell line, established from blood of patient
with acute T-cell leukemia

— — 96

huMDM Human monocyte-derived macrophages — — 96
huPBMC Human peripheral-blood mononuclear cells — ND 96, 99
CEMx174 Somatic-cell hybrid line created by fusion of human B-cell line 174 and CEM

cells
— ND 98

SupT1 Isolated from patient with non-Hodgkin’s T-cell lymphoma; expresses CD4
at high levels

— ND 99

MT-2 Human CD4� T-cell line isolated from patient with T-cell leukemia; HTLV-1
transformed and HTLV-1 producing

— ND 96, 99

CV-1 RSV-transformed kidney epithelium cells from African green monkey
(Chlorocebus sabaeus)

N/A �� 88

HeLa Human cell line derived from patient with cervical epithelial carcinoma N/A �� 96
HEK293T Human embryonic kidney cell line originally created by transformation with

DNA from adenovirus type 5; expresses SV40 large T antigen
N/A ��� 92

a Env with truncated gp41CD has a deletion of at least 144 amino acids. RSV, Rous sarcoma virus; SV40, simian virus 40; ND, not determined; N/A, not applicable (replication
assays not possible because cells do not express CD4); ���, equal to that of wild type; ��, slightly less than that of wild type; �, markedly less than that of wild type; —, below
threshold of detection.
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The membrane-proximal YXX� motif is extremely well con-
served among isolates of HIV-1 groups M, N, and O and of chim-
panzee SIV (SIVcpz) (present in 175 of 176 sequences examined),
as well as of HIV-2, SIVmac, pigtailed macaque SIV (SIVmne),
sooty mangabey SIV (SIVsmm), and stump-tailed macaque SIV
(SIVstm) (68 of 68 sequences) (117). gp41CD of HIV-1 has a
second, similarly well-conserved YXX� motif located closer to the
C terminus of HIV-1 gp41CD (172 of 176 sequences; amino acids
766YHRL769 in HIV-1 NL4-3) (117), which does not mediate sig-
nificant endocytosis but induces NF-�B activation (see below)
(62, 65, 82). SIV gp41CD features two additional YXX� motifs,
one highly conserved in HIV-2, SIVmac, SIVmne, SIVsmm,
and SIVstm (68 of 68 sequences; amino acids 768YIHF771 in
SIVmac239), the other conserved only within SIVmac, SIVmne,
SIVsmm, and SIVstm (40 of 44 sequences; amino acids 795YQIL798

in SIVmac239) and not at all in HIV-2. Neither of these secondary
YXX� motifs mediates detectable levels of endocytosis (59).

The second functional endocytosis motif identified in HIV-1
gp41CD is a dileucine motif at the very C terminus (Fig. 2), which
also utilizes the AP-2 complex for internalization (63). Disruption
of this dileucine motif by itself only leads to a small increase in cell
surface expression of Env but results in a strong synergistic effect
when mutated in combination with the membrane-proximal
YXX� motif (63). Typically, endocytosis-mediating dileucine
motifs recruit the �2 subunit of the AP-2 complex (118), but such
an interaction between gp41CD and �2 has yet to be formally
demonstrated. Surprisingly, this dileucine motif (amino acids
853LL854 of sequence 849LERILL854 in HIV-1 NL4-3) does not fully
conform to the consensus dileucine motif for clathrin-mediated
endocytosis ([D/E]XXXL[L/I/M]) (118), and it is not pervasively
conserved within HIV-1 and SIVcpz (135 of 176 sequences) (117).
There is strong evidence that gp41CD of SIV also contains a sec-
ond endocytosis motif close to the C terminus, as truncations
C-terminal to the membrane-proximal YXX� motif have been
shown to increase cell surface expression of SIV Env, and disrup-
tion of the membrane-proximal YXX� motif reduces Env endo-
cytosis more strongly when part of gp41CD is removed (58, 59,
110). Consistent with this observation, the C-terminal dileucine
motif of HIV-1 gp41CD is highly conserved in gp41CD of HIV-2,
SIVmac, SIVmne, SIVsmm, and SIVstm (67 of 68 sequences;
amino acids 878LL879 in SIVmac239) (117) (Fig. 2).

In addition to the C-terminal L[L/I] motif, gp41CDs of
HIV-1 and SIV have multiple L[L/I] motifs (six in HIV-1, four in
SIVmac), with various degrees of conservation among isolates.
None of these motifs conform to the consensus motif for endocy-
tosis [D/E]XXXL[L/I/M]. Studies in which these additional endo-
cytosis motifs were mutated did not detect major effects on cell
surface expression of Env (59, 113). Nonetheless, there is some
evidence that the gp41CD, at least of SIV, contains additional
signals that contribute to endocytosis (59). It is not clear whether
residual endocytosis in the absence of the established endocytosis
motifs of gp41CD is mediated by signals that do not conform to
the known consensus motifs or whether multiple redundant en-
docytosis motifs mask the contribution of individually mutated
motifs. Further studies will be required to comprehensively eluci-
date the complexities of Env endocytosis.

Interestingly, Egan et al. reported that the presence of HIV-1
Gag was sufficient to counteract the endocytosis of Env, presum-
ably because binding of the Gag domain matrix (MA) to gp41CD
(see following section) blocks the interaction of gp41CD with

AP-2 (119). In order to be efficiently incorporated into the virion,
sufficient numbers of Env molecules need to be present on the cell
surface, and consequently it has been suggested that Gag prevents
endocytosis of Env molecules that are about to be incorporated,
while redundant Env is removed from the cell surface (119). Con-
trary to this, it has been demonstrated that CEMx174 cells chron-
ically infected with SIVmac239 rapidly endocytose SIV Env from
their surfaces despite the presence of SIV Gag (59, 64). This dis-
parity could possibly reflect differences between HIV-1 and SIV in
the interactions of their respective Env and Gag proteins. To fully
understand the relevance of these observations, further studies
will be needed.

The rapid endocytosis of Env from the cell surface translates
into a low number of Env trimers incorporated per virion. The
number of spikes per virion has been estimated to range from 7 to
16, as calculated based on the molar ratio of Env to Gag by high-
performance liquid chromatography (HPLC) (120) and Western
blotting (110), as well as visual detection by electron tomography
(12). All of these different methods performed by independent
laboratories yielded remarkably consistent results. The same stud-
ies also found that SIV variants with truncated gp41CD invariably
show much higher levels of Env incorporation, ranging from ca.
10- to 40-fold more Env trimers per virion than SIV with full-
length gp41CD. Yuste et al. compared several SIV gp41CD mu-
tants with premature stop codons or a mutation of the mem-
brane-proximal YXX� motif and observed that the level of Env
surface expression was closely mirrored by the level of Env incor-
poration into virions (110).

Why would HIV-1 and SIV evolve mechanisms to minimize
the level of Env on the surfaces of host cells and virions? The most
likely explanation is that it serves as a mechanism for immune
evasion. The presence of Env on the cell or virion surface exposes
viral epitopes to antibody binding, antibody-dependent cell-me-
diated cytotoxicity (ADCC), and complement-mediated cytotox-
icity. Consequently, limiting the amount of Env on the cell surface
could reasonably provide HIV and SIV with some degree of pro-
tection against the humoral branch of the immune system, al-
though this protection must necessarily be incomplete to allow for
Env incorporation into virions and viral entry. This theory is sup-
ported by the observation that a hard-to-revert mutation which
increased the cell surface expression of SIV Env by disrupting the
membrane-proximal endocytosis motif of gp41CD resulted in se-
verely attenuated pathogenicity of SIV infection in rhesus ma-
caques, consistent with better control of viral infection by the
host’s immune system (116).

ENVELOPE INCORPORATION INTO VIRIONS

The matrix (MA) component of the Gag precursor protein has
long been known to be an essential regulator of Env incorpo-
ration into HIV and SIV virions (115, 121–124). MA tethers the
Gag polyprotein to the inner leaflet of the membrane through a
myristoylated, membrane-binding domain (125–129). Targeting
of Gag to the budding site at the plasma membrane is also directed
by MA (130–133) and involves direct binding of MA to phospha-
tidylinositol (4,5)bisphosphate on the inner leaflet (136–139). At
the membrane, MA and Env interact through gp41CD, but the
exact nature of this interaction is not entirely clear (Table 1). A
small deletion in the LLP-2/LLP-3 region of gp41CD that blocks
Env incorporation into HIV-1 virions was shown to be counter-
acted by mutations in MA (140); conversely, substitutions of sin-
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gle amino acids in MA can block incorporation of Env into virions
(95, 141). Surprisingly, mutations in MA that block Env incorpo-
ration can be overcome by truncation of the gp41CD N-terminal
of LLP-2 (85, 95, 141, 142). These data suggest that an interaction
between Env and MA may not be required for Env incorporation
per se but may be necessary to structurally accommodate the pres-
ence of the long cytoplasmic domain of gp41. In this context, it is
interesting to note that MA, like gp41, may assemble into trimers
or hexamers of trimers (126, 143), although the definitive in vitro
structure is not yet known. Alternatively, the higher levels of Env
at the cell surface resulting from truncation of gp41CD (see above)
may simply allow for sufficient Env to become incorporated into
virions despite the MA mutation.

How exactly gp41CD and MA interact physically is controver-
sial. An early publication by Cosson reported a direct interaction
of purified, bacterially expressed Env and MA that mapped to the
C-terminal half of gp41CD (75). In direct contradiction to these
findings, Lopez-Vergès et al. later described the intracellular traf-
ficking protein perilipin-3, more commonly known as tail-inter-
acting protein of 47 kDa (TIP47), as an essential connector be-
tween gp41CD and MA which mediates their interaction as part of
a heterotrimeric complex that is indispensable for Env incorpora-
tion into HIV-1 virions in CD4� T cells and HeLa cells (Table 1)
(79). The same group recently reported similar findings for HIV-1
infection of primary macrophages (144). A different study con-
firmed the interaction between perilipin-3 and HIV-1 gp41CD,
but the presence or absence of perilipin-3 did not seem to affect in
vitro binding of gp41CD to MA (76). The same publication also
demonstrated a direct interaction between SIV MA and SIV
gp41CD and, interestingly, between SIV MA and HIV-1 gp41CD
(76). Further studies are needed to resolve the specifics of
gp41CD/MA interaction. Perilipin-3 has also been suggested to be
involved in intracellular trafficking of Env, as described in more
detail below.

INTRACELLULAR TRAFFICKING

gp41CD regulates intracellular trafficking of Env through a variety
of interaction partners. The membrane-proximal YXX� motif in
the gp41CDs of HIV-1 and SIV and the C-terminal dileucine mo-
tif of HIV-1, which mediate endocytosis (see above), have been
shown to bind the �1 subunit of the AP-1 complex in addition to
�2 of the AP-2 complex (Table 1) (58–62, 65). Unlike the AP-2
complex, whose principal function is clathrin-mediated endocy-
tosis from the plasma membrane, the AP-1 complex is primarily
involved in clathrin-mediated trafficking between the trans-Golgi
network (TGN) and endosomes (145). In polarized epithelial
cells, the AP-1 complex is able to effect targeting to the basolateral
membrane (145). This last property is consistent with the obser-
vation that the membrane-proximal YXX� motif of gp41CD di-
rects the location of HIV-1 budding in Madin-Darby canine kid-
ney (MDCK) cells (146) and Jurkat T cells (147). In the case of
Jurkat T cells, this polarized budding was shown to be relevant for
cell-to-cell viral transmission (147). Specifically, AP-1-mediated
trafficking of Env might play an important role in targeting Env to
the virological synapse during T-cell-to-T-cell transmission
(148).

Another interaction partner of gp41CD that is involved in in-
tracellular trafficking is the cellular protein perilipin-3 (Table 1)
(78). The interaction between gp41CD and perilipin-3 requires
the presence of a diaromatic YW motif contained within the

LLP-3 region (800YW801 in Env of HIV-1 NL4-3). Perilipin-3 has
been reported to be essential for the retrograde transport of man-
nose-6-phosphate receptors from endosomes to the TGN (149).
Interestingly, perilipin-3 is also a member of the PAT family (thus
named for the member proteins perilipin, adipophilin, and
TIP47) of lipid droplet-associated proteins and as such is involved
in lipid metabolism (150). The physiological relevance of perili-
pin-3 binding to gp41CD is not entirely clear, but disruption of
this association altered the subcellular localization of Env (78,
144). It is worth noting that a cellular interaction partner of
perilipin-3, the GTPase Rab9 (151), was independently shown to
be required for efficient replication of HIV-1 (152).

Interestingly, another intracellular-trafficking protein re-
ported to interact with gp41CD of both HIV-1 and SIV, the pre-
nylated Rab acceptor 1 (PRA1) (Table 1) (38), also interacts func-
tionally with Rab9 (153). PRA1 was identified as an interaction
partner of SIV gp41 in a yeast two-hybrid screen (38). Binding
could not be verified by coimmunoprecipitation or glutathione
S-transferase (GST) pulldown but was detectable with modest ef-
ficiency in a mammalian two-hybrid assay. Based on the same
assay, an interaction of PRA1 with HIV-1 gp41CD was also iden-
tified. The interaction between SIV gp41CD and PRA1 mapped to
the LLP-2 region (38). However, a subsequent study found that
neither overexpression of PRA1 nor its downregulation by RNA
interference (RNAi) had any measurable effect on Env incorpora-
tion, infectivity, or virus production (154). The observation that
depletion of PRA1 had no effect on various aspects of the life cycle
of HIV-1 and SIV raises the question of whether PRA1 is truly a
relevant interaction partner of gp41CD.

In addition to these protein interactions, gp41CD harbors de-
terminants that have been reported to target Env to detergent-
resistant membrane fractions, also known as lipid rafts. A highly
conserved cysteine located in the vicinity of the LLP-2 region of
HIV-1 and SIV gp41CD is subject to palmitoylation, which might
serve as a membrane anchor and stabilize the association of
gp41CD with the plasma membrane (80). A second cysteine lo-
cated closer to the C terminus has also been shown to be palmi-
toylated but is less conserved among HIV-1 isolates and is absent
in SIV isolates (117). The palmitoylation of gp41CD cysteines (or
their replacement with bulky hydrophobic amino acids) has been
suggested to target Env to lipid rafts (155, 156). Bhattacharya et al.
reported that targeting of Env to lipid rafts enhances Env incorpora-
tion into virions and infectivity but is not required for either (155).
Chen and colleagues have questioned the role of palmitoylation and
have suggested instead that the LLP regions are principally responsi-
ble for targeting of Env to lipid rafts (157, 158).

CELLULAR ACTIVATION

Recently, the gp41CDs of HIV-1 and SIV were shown to induce
activation of NF-�B, providing the first description of a role for
gp41CD in the regulation of cellular activation (82). NF-�B (for
nuclear factor �B) describes a heterogeneous family of transcrip-
tion factors that are essential regulators of diverse biological pro-
cesses, including cellular proliferation, survival, and differentia-
tion, as well as innate and adaptive immunity (159). Importantly,
NF-�B also serves as a major regulator for the transcription of the
HIV-1 and SIV proviral genomes. The long terminal repeat (LTR)
region of HIV-1 typically has two NF-�B-binding sequences;
clade C isolates have at least three (160–163). The LTR of SIVmac
has one NF-�B-binding site (164). As a result of considerable re-
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dundancy of cis-acting elements within the LTR, these NF-�B-
binding sites are not absolutely required for replication of HIV-1
or SIV (165–168). However, activation of NF-�B can drastically
enhance LTR-dependent transcription (161, 169, 170), and stim-
ulation of HIV-1-infected cells with NF-�B-activating cytokines
can strongly increase viral replication (134, 171, 172). gp41CD of
HIV-1 and SIV induces NF-�B activation through the canonical
pathway, and this process requires activation of the serine/threo-
nine kinase transforming growth factor � (TGF-�)-activated ki-
nase 1 (TAK1) (82). TAK1 is a central regulator of NF-�B activa-
tion upon which several branches of the canonical pathway
converge. TAK1 phosphorylates and thereby activates the inhibi-
tor of �B kinase (IKK) complex, which in turn phosphorylates
inhibitor of �B (I�B) proteins and thus marks them for protea-
somal degradation. Removal of I�B proteins allows cytoplasmic
NF-�B dimers to translocate into the nucleus and act as regulators
of transcription (173, 174). gp41CD of HIV-1 interacts physically
with TAK1, and this interaction requires the same region of the
cytoplasmic domain that is required for NF-�B activation (Fig. 2
and Table 1) (82), implying a causal relationship between TAK1
binding and induction of NF-�B activation by HIV-1 gp41CD.
This region of HIV-1 gp41CD partly overlaps with LLP-2 and
includes the second, distal YXX� motif (see above). SIV gp41CD
does not interact detectably with TAK1 but appears to intersect
the canonical NF-�B pathway through a signaling protein up-
stream of TAK1. This signaling protein remains to be identified. A
mutant of HIV-1 NL4-3 deficient for gp41CD-mediated NF-�B
activation did not display impaired infectivity or replication in
fully activated cells but was unable to replicate efficiently in sub-
optimally activated host cells in which wild-type virus replicated
successfully. Importantly, this defective phenotype of the gp41CD
mutant could be rescued by exogenous stimulation of the host
cells (82). These observations imply that the capacity of gp41CD
to induce activation of NF-�B is important for the virus’s ability to
replicate under conditions of limited cellular activation and thus
may be particularly relevant for replication in vivo, where the virus
is likely to continuously encounter non- or suboptimally activated
lymphocytes.

CYTOTOXICITY AND APOPTOSIS

Shortly after the isolation of HIV-1, it was suggested that gp41CD
is responsible, at least in part, for the strong cytopathic effects
observed during infection in cell culture (175, 176). Consistent
with this notion, synthetic peptides corresponding in sequence to
the LLP regions have the ability to lyse prokaryotic and eukaryotic
cells in vitro, leading to their designation as lentivirus lytic pep-
tides (55, 56, 177, 178). It is not clear what significance the cyto-
toxic potential of the individual LLP regions has in the context of
the whole Env protein, much less during infection, and how much
they contribute to the cytopathicity of infection by HIV or SIV.
Costin et al. have suggested that the LLP regions might form a
membrane pore in the context of the complete Env trimer and
thus cause cytopathicity through uncontrolled ion flux between
the cytosol and the extracellular medium (179, 180); however,
there is currently limited evidence to support this hypothesis.

In addition to the cytopathic potential inherent in the LLP
regions, the gp41CDs of HIV-1 and SIV have also been shown to
interact with a regulator of apoptosis, calmodulin (CaM) (Table
1) (66–71). CaM is a major sensor and regulator of intracellular
Ca2� concentration and, in addition to apoptosis regulation

(181), is involved in a plethora of different cellular processes, in-
cluding lymphocyte activation via the transcription factor family
NF-AT (182, 183). Synthetic peptides corresponding to LLP-1 and
LLP-2 sequences of HIV-1 and SIV have been shown to interact
with CaM (68–71), but binding in the context of full-length
gp41CD appears to be confined largely to LLP-1, at least in the case
of HIV-1 (66, 67). HIV-1 gp41CD induces an increase in the in-
tracellular concentration of Ca2�, leads to spontaneous apoptosis,
and enhances FAS-mediated apoptosis; these effects can be
blocked by CaM inhibitors and by mutations that abrogate the
interaction between CaM and gp41CD (66, 67, 184–186). Mutant
virus that is unable to bind to CaM through gp41CD was shown to
replicate with kinetics indistinguishable from that of wild-type
virus in tissue culture (184).

What benefit—if any—might the virus derive from inducing
necrosis and/or apoptosis in the infected host cell? It is certainly
conceivable that these cytotoxic effects are an unavoidable conse-
quence of maximizing virus production and infectivity. Other
possible explanations for the cytotoxicity ascribed to the LLP re-
gions and the observed interaction between gp41CD and CaM
include the following.

(i) The cytotoxicity of gp41CD might be exaggerated under
conditions of experimental Env overexpression. Cytotoxic expres-
sion levels may not be reached during infection in vivo.

(ii) The cytotoxic sequences might have beneficial properties
that outweigh any negative consequences of killing the host cell.
For instance, the LLP regions are believed to form amphipathic
helices, providing the biophysical basis for the postulated interac-
tion of gp41CD with the membrane, which may be important for
targeting of Env to lipid rafts and for stabilizing the Env trimer in
the prefusion conformation (see above). The ability to interact
with both hydrophobic and hydrophilic surfaces brings with it an
inherent potential for membrane disruption, making it difficult to
separate the ability to associate with the membrane from the cy-
totoxic potential. Similarly, CaM is a highly versatile regulatory
protein that is involved in activities other than apoptosis (182,
183). It is possible that the interaction between gp41CD and CaM
has evolved to exploit another function of CaM, for instance, its
role in lymphocyte activation (182, 183). As optimal replication of
HIV and SIV requires fully activated host cells (187–190), using
CaM to enhance the state of cellular activation would offer an
obvious advantage to viral replication that may outweigh the con-
comitant disadvantage of inducing apoptosis.

(iii) Env is expressed late in the viral life cycle. It is possible that
Env does not accumulate to cytotoxic levels before the host cell has
already released large amounts of viral progeny, at which point the
death of the host cell may be of limited consequence to the virus.

INTERACTIONS WITH REGULATORS OF THE CYTOSKELETON

Virtually all known vertebrate viruses, including HIV, manipulate
the actin cytoskeleton during their replication cycles. The cortical
actin fibers form a densely polymerized meshwork adjacent to the
cell membrane and constitute a considerable physical obstacle to a
virus (191). Manipulation of the actin cytoskeleton may allow the
virus to penetrate the cortical actin network upon entry and egress
(192, 193). While direct manipulation of actin filaments by
gp41CD has not been experimentally established, gp41CD has
been shown to interact with at least two proteins that are involved
in the regulation of the actin cytoskeleton.

Specifically, HIV-1 gp41CD interacts with p115-RhoGEF, a
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guanine nucleotide exchange factor and activator of the RhoA
GTPase (Table 1) (77). RhoA is a central regulator of actin stress
fibers and focal adhesions (194) and is the target of manipulation
by several other viruses (193). Additionally, RhoA is involved in
the regulation of cell cycle progression and the transcription fac-
tors serum response factor (SRF) and NF-�B (195). Importantly,
activation of RhoA by p115-RhoGEF has been shown to inhibit
replication of HIV-1 (196). The mechanism of this inhibition has
never been resolved, but it surprisingly appears to be unrelated to
actin reorganization. Wang et al. were able to show that inhibition
of HIV-1 transcription by RhoA activation was independent of the
known RhoA functions of stress fiber formation, SRF activation,
and transformation and therefore suggested RhoA might inhibit
HIV-1 transcription through a novel, hitherto-unknown pathway
(196). The interaction between gp41CD and p115-RhoGEF re-
quired the presence of LLP-2, LLP-3, and LLP-1 and could be
abrogated by single-amino-acid substitutions in LLP-3, e.g.,
L798R (77). Intriguingly, the L798R mutation blocked viral repli-
cation in three different cell lines. Conversely, the presence of
wild-type gp41CD inhibited p115-RhoGEF signaling, including
RhoA activation (77). Although it was never formally demon-
strated, it seems likely that the inhibition of p115-RhoGEF by
gp41CD binding has evolved to inhibit activation of RhoA and
thus to facilitate viral replication. gp41CD of SIV did not detect-
ably interact with p115-RhoGEF (38).

Interestingly, RhoA interacts functionally and physically with
the cadherin complex, which includes another interaction partner
of gp41CD, �-catenin (Table 1) (72, 73, 197). �-Catenin is pri-
marily known for its pivotal role in cell-cell adhesion as part of the
�-catenin/�-catenin/cadherin complex. During the formation of
intercellular cadherin interactions, �-catenin is believed to induce
the reorganization of the actin cytoskeleton by binding to actin
filaments (198). Recently, additional activities have been attrib-
uted to �-catenin, including a role in the regulation of cell prolif-
eration and hedgehog signaling (199). Kim et al. reported that
HIV-1 gp41CD and �-catenin interact directly through the LLP-3
region (72, 73). SIV gp41CD also interacted with �-catenin in
yeast two-hybrid assays, but the group did not confirm this inter-
action with a more rigorous assay (72). The interaction with
HIV-1 gp41CD mapped to the C-terminal region of �-catenin,
which also harbors the actin-binding domain. �-Catenin did not
interact directly with gp41CD (73). As cadherin complexes medi-
ate cell-cell adhesion, it has been suggested that gp41CD binding
to �-catenin might be involved in cell-to-cell transmission of
HIV-1 (73). However, to our knowledge there is currently no re-
port that implicates cadherins and/or �-catenin in the formation
of cell contacts between T cells. Alternatively, �-catenin might
serve as an adaptor between gp41CD and the actin cytoskeleton,
serving either to target Env to the site of viral budding or to reor-
ganize the actin cytoskeleton to facilitate egress. Attractive hy-
potheses notwithstanding, a physiological role for the interaction
of �-catenin with gp41CD remains to be demonstrated.

Of note, �-catenin has been reported to interact with gp41CD
in the same region as p115-RhoGEF, inviting speculation that the
separately published interactions of �-catenin and p115-RhoGEF
with gp41CD might indeed be related phenomena.

OVERCOMING CELLULAR RESTRICTION

Two recently identified interaction partners of gp41CD, luman
(74) and prohibitin 1/2 (81) (Table 1), indicate that gp41CD

might also act to overcome certain aspects of cellular restriction of
HIV replication.

Luman (also known as CREB3 or LZIP) is a poorly character-
ized member of the OASIS family of transcription factors (200).
Luman appears to be associated with the ER stress response, or
unfolded protein response (UPR) (200). Both known target genes
of luman are involved in ER-associated degradation (ERAD) of
unfolded protein (200). Blot et al. found that the ER membrane-
bound, inactive, full-length form of luman interacted with
gp41CD of HIV-1, SIV, and HIV-2 in yeast two-hybrid assays
(74). For HIV-1 gp41CD, this interaction was confirmed by co-
precipitation and mapped to a region N-terminal of LLP-2. Ex-
pression of gp41CD led to accelerated degradation of full-length
luman, implying that the interaction between gp41CD and luman
has evolved to reduce levels of luman in the infected cell. Interest-
ingly, a cleaved, constitutively active form of luman reduced pro-
viral transcription (74). The mechanism by which activated lu-
man represses proviral transcription and what role these
interactions play during infection remain to be elucidated; how-
ever, gp41CD may have evolved to counteract the antiviral effects
of luman.

Emerson et al. have identified an interaction between HIV-1
gp41CD and a (presumably heterodimeric) complex of the pro-
teins prohibitin 1 and prohibitin 2 (81). Prohibitin 1/2 are in-
volved in a multitude of cellular processes, including signal trans-
duction, mitochondrial function, apoptosis, and cell proliferation
(201, 202). They are localized primarily to mitochondria but have
also been detected at the plasma membrane and in the nucleus
(202). The interaction between gp41CD and prohibitin 1/2
mapped to a region in the center of LLP-3 (81). Mutations of
gp41CD that abrogated binding to prohibitin 1/2 produced a rep-
lication phenotype reminiscent of complete gp41CD truncations;
i.e., mutant HIV-1 was able to replicate in a cell line permissive for
gp41CD truncation but not in a nonpermissive cell line (see
above). This prompted the authors to speculate that prohibitin
1/2 binding by gp41CD may be essential for HIV-1 replication in
nonpermissive cell lines. It is not clear how prohibitin 1/2 might
influence viral replication, as Env incorporation into virions was
not affected in the absence of prohibitin 1/2 binding to gp41CD,
and no other mechanism has been proposed (81).

Serra-Moreno et al. recently described a particularly interest-
ing example of gp41CD adaptation to counteract a cellular restric-
tion factor (203). They reported that an SIV variant from a rhesus
macaque that had been infected with a form of SIVmac with a nef
deletion had acquired the ability to bind to and counteract the
cellular restriction factor bone marrow stromal antigen 2 (BST-2;
also known as CD317, HM1.24 antigen, or tetherin) via its
gp41CD (203). BST-2 is an interferon-inducible factor that is able
to inhibit the spread of enveloped viruses by “tethering” them to
the cell surface after egress and mediating their endocytosis (204–
206). HIV-1 typically uses its Vpu protein to bind to and counter-
act BST-2, while HIV-2 uses the extracellular domain of its Env
protein. Most SIV strains counteract BST-2 through Nef (204).
Infection of rhesus macaques with nef-deleted SIVmac (SIVmac
�nef) typically has a considerably attenuated phenotype (207).
However, the infection persists at low levels, and in some cases, the
virus can acquire compensatory mutations that restore its patho-
genic potential to various degrees (135, 208). Serra-Moreno et al.
studied one such variant of SIVmac �nef with increased patho-
genic potential and found that it had accumulated mutations in its
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LLP-3 and LLP-1 regions of gp41CD that allowed it to bind to and
counteract BST-2 (203). Interestingly, inhibition of BST-2 activ-
ity, but not binding to BST-2, required the membrane-proximal
YXX� motif of gp41CD (203). This example illustrates the im-
pressive functional versatility and adaptability of gp41CD.

CONCLUDING REMARKS

It now seems quite clear that the cytoplasmic domain of the HIV-1
and SIV gp41 glycoproteins contributes a variety of different func-
tional activities to the viral life cycle. In particular, these include
endocytosis to regulate levels of Env surface expression, incorpo-
ration of Env into virions, intracellular trafficking of Env, and
activation of the host cell. Some of the cellular interaction partners
mediating these functions have been reasonably well character-
ized. However, several other interaction partners of gp41CD
whose functional relevance is less clear have been described. These
interactions seem to implicate gp41CD in an even wider range of
functions, including apoptosis induction, actin modulation, and
countering aspects of cellular restriction. Assessment of the signif-
icance of these interaction partners is currently incomplete and
will require further investigation. Considering that �-catenin,
p115-RhoGEF, prohibitin 1/2, and perilipin-3 all have been re-
ported to interact with gp41CD in the same region (Table 1), use
of a mutational approach to gauge relative importance and phe-
notypic manifestations will be a daunting challenge.

In addition to these relatively new questions, the long-standing
puzzle of the cell-type-dependent requirement of gp41CD for vi-
ral replication remains an exciting area of research. The complex
phenotype observed with truncated gp41CD of HIV-1 and SIV
bears the hallmarks of a species-specific and differentially ex-
pressed restriction factor that can be counteracted by gp41CD;
however, whether such a restriction factor does indeed exist and, if
so, the identity of this factor remain to be elucidated. Another
intriguing question is whether difficult-to-revert mutations that
reduce Env endocytosis result in more effective immunological
control of viral replication. Answering this question will undoubt-
edly require creative experimental design using the rhesus ma-
caque model of SIV infection.
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